January 16, 2024

LaTeX Test Article

#demo

Just a test article to check if LaTeX formulas render properly.

Given that ex1ax1=ex2ax2=0e^{x_1} - ax_1 = e^{x_2} - ax_2 = 0 , x1x2x_1 \ne x_2, we are to prove:

x1+x2<4lna+23.x_1 + x_2 < \frac{4\ln a + 2}{3}.

We define f(x)=exaxf(x) = e^x - ax, Since f(x1)=f(x2)=0f(x_1) = f(x_2) = 0, we have ex1=ax1e^{x_1} = ax_1 and ex2=ax2e^{x_2} = ax_2.

Taking logarithms, these equations yield x1lnx1=lnax_1 - \ln x_1 = \ln a and x2lnx2=lnax_2 - \ln x_2 = \ln a.

We define g(x)=xlnxg(x) = x - \ln x, which satisfies g(x1)=g(x2)=lnag(x_1) = g(x_2) = \ln a.

The goal is to prove x1+x2<4lna+23x_1 + x_2 < \frac{4\ln a + 2}{3}.

Substituting lna=x1lnx1\ln a = x_1 - \ln x_1 into the inequality, we transform it into:

x2<13x143lnx1+23.x_2 < \frac{1}{3}x_1 - \frac{4}{3}\ln x_1 + \frac{2}{3}.

Since g(x)g(x) is strictly increasing on (1,)(1, \infty), this inequality is equivalent to:

lna<g(13x143lnx1+23).\ln a < g\left( \frac{1}{3}x_1 - \frac{4}{3}\ln x_1 + \frac{2}{3} \right).

Substituting lna=x1lnx1\ln a = x_1 - \ln x_1, we define

F(x)=ln(13x43lnx+23)+23x+13lnx23.F(x) = \ln\left( \frac{1}{3}x - \frac{4}{3}\ln x + \frac{2}{3} \right) + \frac{2}{3}x + \frac{1}{3}\ln x - \frac{2}{3}.

We prove F(x)<0F(x) < 0 for all x(0,1)x \in (0,1).

And we compute the derivative F(x)F'(x):

F(x)=1343x13x43lnx+23+23+13x.F'(x) = \frac{\frac{1}{3} - \frac{4}{3x}}{\frac{1}{3}x - \frac{4}{3}\ln x + \frac{2}{3}} + \frac{2}{3} + \frac{1}{3x}. =2(x2+4x2(2x+1)lnx5)3x(x4lnx+2).= \frac{2\left(x^2 + 4x - 2(2x+1)\ln x - 5\right)}{3x\left(x - 4\ln x + 2\right)}.

For x(0,1)x \in (0,1), the term x4lnx+2>0x - 4\ln x + 2 > 0.

Let M(x)=x2+4x2(2x+1)lnx5M(x) = x^2 + 4x - 2(2x+1)\ln x - 5. At x=1x = 1, M(1)=0M(1) = 0. As x0+x \to 0^+, let t=lnx+t = -\ln x \to +\infty. Then:

M(x)=e2t+4et+2(2et+1)t52t5+.M(x) = e^{-2t} + 4e^{-t} + 2(2e^{-t} + 1)t - 5 \geq 2t - 5 \to +\infty.

M(x)=2x+44lnx4x+2xM'(x) = 2x + 4 - 4\ln x - \frac{4x+2}{x}. For x(0,1)x \in (0,1), M(x)M'(x) has a critical point, but M(x)>0M(x) > 0 by continuity and boundary limits.

Thus, F(x)>0F'(x) > 0 on (0,1)(0,1), F(x)F(x) is strictly increasing.

And, as x1x \to 1^-:

limx1F(x)=0.\lim_{x \to 1^-} F(x) = 0.

As x0+x \to 0^+, substitute x=etx = e^{-t} with t+t \to +\infty:

F(x)=ln(43t+o(t))+23ett323.F(x) = \ln\left( \frac{4}{3}t + o(t) \right) + \frac{2}{3}e^{-t} - \frac{t}{3} - \frac{2}{3}.

Dominant terms yield:

ln(43t)t3=ln(43)+lntt3.\ln\left( \frac{4}{3}t \right) - \frac{t}{3} = \ln\left( \frac{4}{3} \right) + \ln t - \frac{t}{3}.

Since lntt3\ln t - \frac{t}{3} \to -\infty as t+t \to +\infty, it follows that limx0+F(x)=\lim_{x \to 0^+} F(x) = -\infty.

Since F(x)F(x) is strictly increasing on (0,1)(0,1), with limx1F(x)=0\lim_{x \to 1^-} F(x) = 0 and limx0+F(x)=\lim_{x \to 0^+} F(x) = -\infty, we conclude F(x)<0F(x) < 0 for all x(0,1)x \in (0,1). Therefore, the original inequality x1+x2<4lna+23x_1 + x_2 < \frac{4\ln a + 2}{3} holds.